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ABSTRACT
Non-negative matrix factorization (NMF) approximates a
given matrix as a product of two non-negative matrix factors.
Multiplicative algorithms deliver reliable results, but they
show slow convergence for high-dimensional data and may
be stuck away from local minima. Gradient descent methods
have better behavior, but only apply to smooth losses. For
non-smooth losses such as the Kullback-Leibler (KL) loss,
surprisingly, these methods are lacking. In this paper, we
propose a first-order primal-dual algorithm for non-negative
decomposition problems (one of the two factors is fixed) with
the KL distance. All required computations may be obtained
in closed form and we provide an efficient heuristic way to
select step-sizes. By using alternating optimization, our algo-
rithm readily extends to NMF and, on synthetic or real world
data, it is either faster than existing algorithms, or leads to
improved local optima, or both.

Index Terms— Non-negative matrix factorization, Primal-
dual approaches, Optimization, Kullback-Leibler divergence.

1. INTRODUCTION

Non-negative matrix factorization (NMF) is a method that
aims at finding part-based linear representations of non-
negative data by factorizing it as the product of two low-rank
non-negative matrices [1, 2]. Two well-known multiplicative
updates algorithms (MUAs) for NMF were introduced in [3],
minimizing either the least-squares or Kullback-Leibler (KL)
loss. MUAs extend to other losses and have been reported in
different applications, e.g., face recognition [4], and music
analysis [5]. However, they have slow convergence rate in
high-dimensional data and are susceptible to become trapped
in poor local optima [6]. Gradient descent methods for NMF
provide additional flexibility and fast convergence, but only
apply to the minimization of the least-squares loss [6, 7]. The
goal of this paper is to propose a strong and simple alterna-
tive to MUAs, by providing a similar first-order method for
the KL distance, with updates as cheap as in MUAs. Our
method builds on [8] which consider the alternating direc-
tion method of multipliers (ADMM). We instead rely on the
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Chambolle-Pock algorithm [9], which may be seen as a lin-
earized version of ADMM, and thus we may reuse some of
the tools developed in [8] while having an empirically faster
algorithm. Because of the lack of smoothness of the KL loss
(i.e., second-order derivatives not bounded), some techniques
such as the forward-backward algorithm cannot be applied.
We thus need methods adapted to non-smooth problems,
where the algorithm in [9] is natural.

The main contributions of this paper are as follows:

– A primal-dual formulation for the convex KL decom-
position problem (Section 3.1), and an extension to the
non-convex problem of NMF (Section 3.3).

– Based on convergence proofs, a purely data-driven way
to select all step-sizes (Section 3.2).

– A Matlab implementation (Algorithm 2), available at
http://www.di.ens.fr/˜fbach/nmf_fpa.html

2. PROBLEM FORMULATION

Let V ∈ Rn×m
+ denote the given matrix formed by m non-

negative column vectors of dimensionality n. Considering
r ≤ min(n,m), let W ∈ Rn×r

+ and H ∈ Rr×m
+ such that

V ≈WH. Then, the NMF problem with the KL distance is

minimize
W,H ≥ 0

D(V∥WH), (1)

with D(V∥WH) =
∑

i,j −Vij

{
log

(
(WH)ij

Vij

)
+ 1

}
+(WH)ij .

Problem (1) is non-convex in both factors simultaneously,
whereas convex in each factor separately. These non-negative
decomposition (ND) problems are defined as follows:

minimize
W ≥ 0

D(V∥WH) and minimize
H ≥ 0

D(V∥WH). (2)

2.1. Multiplicative updates algorithm (MUA)

The multiplicative updates may be derived from expectation-
maximization (EM) for a certain probabilistic model [3, 10].
The complexity per iteration of this algorithm is O(rmn).

Wia ← Wia

∑m
µ=1 HaµViµ/(WH)iµ∑m

ν=1 Haν
, and

Haµ ← Haµ

∑n
i=1 WiaViµ/(WH)iµ∑n

k=1 Wka
.

http://www.di.ens.fr/~fbach/nmf_fpa.html


2.2. Alternating direction method of multipliers (ADMM)

In [8], Problem (1) is reformulated as

minimize D(V∥X)

subject to X = YZ, Y = W, Z = H

W ≥ 0, H ≥ 0.

The updates for the primal variables W, H, X, Y and Z
involve certain proximal operators for the KL loss which are
the same as ours in Section 3.1:

Y⊤ ←
(
ZZ⊤ + I

)−1 (
ZX⊤ +W⊤ + 1

ρ

(
Zα⊤

X − α⊤
Y

))
Z ←

(
Y⊤Y + I

)−1 (
Y⊤X+H+ 1

ρ

(
Y⊤αX − αZ

))
X ←

(ρYZ− αX − 1) +
√

(ρYZ− αX − 1)2 + 4ρV

2ρ

W ←
(
Y + 1

ρ
αY

)
+

and H ←
(
Z+ 1

ρ
αZ

)
+
.

These primal updates require solving linear systems of
size r × r, but that the overall complexity remains O(rmn)
per iteration. Note that the parameter ρ ∈ R+ needs to be
tuned. The dual variables αX, αY and αZ are updated as:

αX ← αX + ρ (X−YZ)

αY ← αY + ρ (Y −W)

αZ ← αZ + ρ (Z−H) .

Our approach has the following differences: (i) we aim
at solving alternatively convex problems with a few steps of
primal-dual algorithms for convex problems, as opposed to
aiming at solving directly the non-convex problem with an
iterative approach, (ii) for the ND problems, we have certifi-
cates of optimality, which can be of use for online methods
for which ND problems are repeatedly solved [11], and (iii)
we use a different splitting method, namely as in [9], which
does not require matrix inversions, and which allows us to
compute all step-sizes in a data-driven way.

3. PROPOSED METHOD

We formulate the ND as a first-order primal-dual algorithm
(Algorithm 1), extending it then to NMF (Algorithm 2).

3.1. Primal and dual computation

We consider a vector a ∈ Rp
+ and a matrix K ∈ Rp×q

+ as
known parameters, and x ∈ Rq

+ as an unknown vector to be
estimated such that a ≈ Kx. We aim at minimizing the KL
divergence between a and Kx. This is equivalent to a ND as
defined in (2), considering a as a column of the given data, K
as the fixed factor, and x as a column of the estimated factor.
The ND problem with KL loss is thus

minimize
x∈Rq

+

− a⊤ (log(Kx⊘ a) + 1) + 1⊤Kx, (3)

where ⊘ represents the entry-wise division operator, and 1
is a vector where every element is equal to 1. Based on [9],
the primal in (3) can be written as minx F (Kx) +G(x) with
F (z) = −a⊤ (log(z ⊘ a) + 1), and G(x) = 1x⪰0 + 1⊤Kx.
The idicator function 1x⪰0 gives 0 if all components of
x are non-negative and +∞ otherwise. The dual is then
maxy −F ∗(y) − G∗(−K⊤y) with F ∗(y) = −a⊤ log (−y)
and G∗(y) = 1y⪯K⊤1, i.e.,

maximize
K⊤(−y) ⪯ K⊤1

a⊤ log (−y) . (4)

Algorithm 1: First-order primal-dual algorithm [9].

Select K ∈ Rp×q
+ , x ∈ Rq

+, σ, τ , N > 0;
Set x̄ = xold = x, y = −a⊘Kx;
for N iterations do

y ← proxσF∗(y + σKx̄);
x← proxτG(x− τK⊤y);
x̄← 2x− xold;
xold ← x;

end
return x⋆ = x.

The step-sizes are σ and τ . The proximal operator definition
is proxτF (x) = argminy

{
∥x− y∥2/2τ + F (y)

}
[12, 13].

As shown in [14], using F ∗ and G we can obtain closed-form
solution operators proxσF∗(y) = 1

2

(
y −
√
y ◦ y + 4σa

)
,

and proxτG(x) =
(
x− τK⊤1

)
+

.

3.2. Automatic heuristic selection of step-sizes

Based on the convergence proofs [9, Theorem 1], we describe
an automatic heuristic selection of step-sizes. These results
state that (a) the step-sizes have to satisfy τσ∥K∥2 < 1,
where ∥K∥ = max{∥Kx∥ : ∥x∥ ≤ 1} is the largest sin-
gular value of K; and (b) the convergence rate is controlled
by the quantity C = ∥y0−y⋆∥2

2σ + ∥x0−x⋆∥2

2τ , where (x⋆, y⋆) is
an optimal primal/dual pair. If (x⋆, y⋆) was known, we could
thus consider minσ,τ

∥y0−y⋆∥2

2σ + ∥x0−x⋆∥2

2τ with the constraint
τσ∥K∥2 = 1. Applying first order conditions we get

σ =
∥y0 − y⋆∥
∥x0 − x⋆∥

1

∥K∥
and τ =

∥x0 − x⋆∥
∥y0 − y⋆∥

1

∥K∥
.

However, we do not know the optimal pair (x⋆, y⋆) and
we use heuristic replacements. That is, we consider the un-
known constants α and β, and assume that x⋆ = α1 and y⋆ =
β1. This gives us ∥x0−x⋆∥ ≈ |α|√q and ∥y0−y⋆∥ ≈ |β|

√
p.

Plugging x⋆ to Problem (3) we find α = 1⊤a
1⊤K1

> 0. Using
optimality conditions, y⋆ ◦ Kx⋆ = −a, we obtain β = −1.
The automatic heuristic selection of step-sizes is as follows:

σ =

√
p

q

1

∥K∥
1⊤K1

1⊤a
and τ =

√
q

p

1

∥K∥
1⊤a

1⊤K1
.

Note the invariance by rescaling of a and K.
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(c) MUA
ADMM (ρ = 5)
FPA (D = 5)
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(d) MUA
ADMM (ρ = 5)
FPA (D = 5)
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(e)

MUA: r
1−>2

 with c = 0

MUA: r
1−>2

 with c = 10−3

MUA: r
1−>2

 with c = 100

MUA: r
1−>2

 with c = 103

FPA (D = 5): r
1−>2

 with c = 0

Fig. 1: Experiments on synthetic data. (a-b) ND problem (estimate H given W⋆). Distance to optimum versus iteration
number and run time, respectively. Distance to optimum is the absolute difference between the values of the objective function
and optimal point. (c-d) NMF problem. Objective function versus iteration number and run time, respectively. Note that the
dual function is not presented due to the non-convexity of the NMF problem. (e) NMF with warm restarts. Objective function
at each iteration for various c, a parameter that controls the magnitude of the non-zero entries in one of the matrix factors.

3.3. Extension to NMF

Our alternating first-order primal-dual algorithm (FPA) for
NMF can be found in Algorithm 2. Similar optimization
approaches were previously reported in [15, 16]. For algo-
rithmic efficiency, we work directly with the matrices, e.g.,
a ∈ Rn×m

+ instead of Rn
+. A key algorithmic choice is the

number of inner iterations D of the convex method, which we
consider in Section 4. The running-time complexity is still
O(rnm) for each inner iterations. Note that computing the
largest singular value of H or W (required for the heuristic
selection of step-sizes everytime we switch from one convex
problem to the other) is of order O(rmax{m,n}) and is thus
negligible compared to the iteration cost. The stopping crite-
ria is set for maximum number of iterations (access to data).

Algorithm 2: FPA for NMF with the KL loss.
Select V ∈ Rn×m

+ , W ∈ Rn×r
+ , H ∈ Rr×m

+ , N , D > 0;
Set W̄ = Wold = W, H̄ = Hold = H, χ = −V ⊘WH;
for N/D iterations do

Set σ =
√

n
r

1
∥W∥

1⊤W1
1⊤V1

and τ =
√

r
n

1
∥W∥

1⊤V1
1⊤W1

;
for D iterations do

χ← χ+ σWH̄;
χ← 1

2

(
χ−
√
χ ◦ χ+ 4σV

)
;

H←
(
H− τW⊤ (χ+ 1)

)
+

;
H̄← 2H−Hold;
Hold ← H;

end
Set σ =

√
m
r

1
∥H∥

1⊤H1
1⊤V1

and τ =
√

r
m

1
∥H∥

1⊤V1
1⊤H1

;
for D iterations do

χ← χ+ σW̄H;
χ← 1

2

(
χ−
√
χ ◦ χ+ 4σV

)
;

W←
(
W − τ (χ+ 1)H⊤)

+
;

W̄← 2W −Wold;
Wold ←W;

end
end
return W⋆ = W and H⋆ = H.

3.4. Extension to topic models

Probabilistic latent semantic analysis [17] or latent Dirich-
let allocation [18], generative probabilistic models for collec-
tions of discrete data, have been extensively used in text anal-
ysis. Their formulations relate to ours in Problem (3), where
we just need to include an additional constraint: 1⊤x = 1. If
we modify G to G(x) = 1{1⊤x = 1; x ⪰ 0} + 1⊤Kx, we
can use Algorithm 1 to find the latent topics. It is important to
mention that herein proxτG(x) does not have a closed solu-
tion, but can be efficiently solved with dedicated methods for
orthogonal projections on the simplex [19].

4. EXPERIMENTAL RESULTS

The performance of our FPA (Algorithm 2), MUA [3], and
ADMM [8] is tested on both synthetic and real world data.

4.1. Synthetic data

Consider n = 200, m = 500, and r = 10. The ground truth
matrix factors W⋆ and H⋆ are randomly generated from the
magnitude of a normal distribution. The given matrix V is set
as the product of the optimal factors W⋆ and H⋆. The initial
factors W0 and H0 are randomly generated from an uniform
distribution. This setting is used in all synthetic experiments.

4.1.1. ND problem

We estimate H given W⋆. The number of iterations for the
three algorithms is set to N = 1000. The tuning param-
eter that controls the convergence rate of ADMM is set to
ρ = 3 (small values imply larger step sizes, which may result
in faster convergence but also instability). Figure 1 (a) illus-
trates the distance to optimum per iteration. FPA and ADMM
reach the optimal point, whereas MUA gets stuck far away
from it. Similar behavior can be observed when comparing
the distance to optimum versus run time in Figure 1 (b), FPA
and ADMM converge significantly faster than MUA.



4.1.2. NMF problem

We solve the non-convex Problem (1) with the three algo-
rithms setting the number of iterations to N = 10 000. The
parameter D indicates the number of iterations to solve each
ND problem. We set D to 5 iterations. To have a fair compari-
son between algorithms, for the FPA, the number of iterations
means access to data, i.e., we use 5 iterations to solve each
problem in (2), and repeat this 2 000 times. Figure 1 (c-d)
illustrates the objective function versus iteration number and
run time, respectively. The MUA and FPA objectives decrease
dramatically in only seconds (few iterations), however, MUA
presents evident slow tail convergence. Even though ADMM
has the poorest initial performance, it reaches an improved
local optima compared to MUA. The best local optima and
fastest convergence is reported by FPA. Note the significant
advantage towards our algorithm, together with the fact that
step-sizes (σ and τ ) are automatically selected.

4.1.3. NMF with warm restarts

Consider we solve the problem just described (Section 4.1.2)
but with r1 = 5 and N1 = 100, and then solve the problem for
r2 = 10 and N2 = 9900. Having solved the first optimization
problem, the computational effort of solving the second one
can be reduced if we use the optimal matrix factors of the first
problem, W⋆

1 and H⋆
1, as an advanced starting point. Note

that r2 > r1, therefore, we need to include (r2 − r1)n and
(r2 − r1)m entries for each factor, respectively. If we add
only zeros, we would be in a saddle-point where none of the
algorithms could perform. However, if we set only one factor
with zero entries and the other one with non-zero values, FPA
could perform. In this situation, MUA cannot perform either
because of the absorbing of zeros. Thus we need to add non-
zero entries in both factors of MUA. Figure 1 (e) illustrates the
warm restarts experiment for FPA and MUA. ADMM is not
shown because it has a similar behavior as FPA. Note that we
include the parameter c to control the effect of the non-zero
entries in one matrix factor. As c → 0, MUA gets stuck in
poor local optima until it cannot perform. Then, as c→ +∞,
the objective value of MUA increases, reducing the advantage
of an advanced starting point. Opposed to MUA, FPA uses the
information gained from the first problem.

4.2. Real world data

4.2.1. MIT-CBCL Face Database #1 [20]

The CBCL face images database is composed of m = 2429
images of size n = 361 pixels. We solve the NMF problem
with r = 10. The number of iterations is set to N = 10 000,
and D = 20. Figure 2 (a-b) show that all algorithms converge
to the same local optima. However, the fastest algorithm is
FPA with a run time of 20.9 min, then ADMM with 21.2 min,
and finally MUA with 22.4 min.
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(c)
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(d)
MUA
ADMM (ρ = 50)
FPA (D = 50)

Fig. 2: NMF experiments on real world data. The objective
function versus iteration number (left) and run time (right) is
computed on (a-b) the MIT-CBCL Face Database #1 [20], and
(c-d) “My Heart (Will Always Lead Me Back to You)” [5].

4.2.2. “My Heart (Will Always Lead Me Back to You)” [5]

The spectrogram of a 108-second-long music excerpt from
“My Heart (Will Always Lead Me Back to You)” by Louis
Armstrong & His Hot Five consists of m = 9312 frames and
n = 129 frequency bins. We set r to 20 and solve NMF with
all algorithms using N = 10 000 and D = 50. Figure 2 (c-d)
illustrates the results. Initially MUA obtains a low objective
value, but as previously discussed, the algorithm shows slow
tail convergence and gets stuck in a worse local optima than
the other ones. ADMM has a slow initial performance, but
then overpasses MUA. When doing alternating optimization,
the local steps (early stopping ND problems) may either be
exact or inexact [21]. Note that the inexact local steps of FPA
end up being most efficient. FPA is both faster than MUA and
ADMM, and leads to an improved local optima.

5. CONCLUSION

We have presented an alternating projected gradient descent
technique for NMF that minimizes the KL divergence loss;
this approach solves convex ND problems with the FPA. Our
approach demonstrated faster convergence than the MUA [3]
and ADMM [8]. An extension to latent Dirichlet allocation
and probabilistic latent semantic indexing can be easily im-
plemented using our proposed method, thus allowing to go
beyond the potential slowness of the EM algorithm.
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